Detecting Social Cliques for Automated Privacy Control in Online Social Networks

Hakan Yıldız

(Joint work with Chris Kruegel)
Outline

- Introduction
- Related Work
- Algorithm
- Evaluation
Privacy in Social Networks

- A “BIG” Issue.
- Not only related to adversaries.
- Often, share target is a specific group of friends.
- Requires more than a simple privacy model.
Friend Lists

• User manually specifies the people that the data exposed to.

• Ideal solution?

• Zuckerberg: “Nobody wants to make lists.” [Siegler, TechCrunch Article '10]

• Facebook recently introduced pre-defined lists.
 • Depends on profile data.
 • Friend list manually assigned.
Automated Privacy Control

• Automatically generate and assign the friend list to the data.
• Network site figures out which people should have access.
• No user involvement.
• User might modify the generated list.
Social Cliques

• Group of people sharing significant interaction, possibly due to a common cause.

• Example: Families, classmates, colleagues ...

• In this study, focused on friendship relationships only.
Detecting Social Cliques from Participating Group

- Data is often associated to a group of people directly contributing. (Participating Group)
- Example: Photo tags, wall feed authorship, etc.
- Expose data to the social clique containing the participating group.
- Limit social clique to the friends of the host user.
Related Work

- **Local Community Detection in SNs:**
 - Community: Densely connected component
 - Detect a single community containing given nodes with local visibility
 [Clauset PR E'05] [Luo et al. WIAS'08] [Chen et al. ASNAM'09]
 - Our problem is a variant of LCD.
 - We introduce novel algorithms.
 - We introduce a new evaluation idea using photo tags.
Related Work

- Privacy in Social Networks
 - Mostly related to privacy against adversaries.
 - Privacy Wizards:
 [Fang and LeFevre, WWW'10]
 - Similar approach
 - Combines machine learning with existing community detection techniques.
 - Actively learns by user input.
Algorithm

- **Objective:** Given a host user s and a subset of her friends P as a participating group, determine a larger subset C of s's friends so that C forms a social clique.
High Level Algorithm

- Assign C to P.
- Repeatedly add a node v from $n(s) - C$ to C.
 - v maximizes the heuristic measure.
 - v satisfies a boolean function $f(C, v)$. (Clique expansion function)
- Stop when all nodes in $n(s) - C$ fail to satisfy f.
- Output C.
Heuristic Measure

- Choose the node v maximizing the number of friends in C:
 $$|C \cap n(v)|$$

- In case of equality, choose v that maximizes average number of common friends in C:
 $$\frac{\sum_{c \in C} |n(c) \cap n(v)|}{|C|}$$
Number of Common Friends

• Real Example
Clique Expansion Scheme 1: CLQ

- \(v \) has friendship links to all nodes in \(C \).

\[
f(C, v) = \begin{cases}
 \text{true} & \text{if } n(v) \cap C = C \\
 \text{false} & \text{otherwise}
\end{cases}
\]

- Too strict. Produces small cliques.
Clique Expansion Scheme 2: \textbf{BAND}_K

- \nu \text{ has at least } K \text{ common friends with each node in } C.

\[f(C, \nu) = \begin{cases}
 \text{true} & \text{if } \forall c \in C. |n(c) \cap n(\nu)| \geq K \\
 \text{false} & \text{otherwise}
\end{cases} \]
Clique Expansion Scheme 3: IN_K

- The idea is to adapt the expansion to the tightness of the clique.
- Initial clique loose \rightarrow Final clique loose.
 Initial clique tight \rightarrow Final clique tight.
- Let $r(v, C)$ be the percentage of v's friends in C.

$$r(v, C) = \frac{|n(v) \cap C|}{|C|}$$
Clique Expansion Scheme 3: IN$_K$

- Average the percentage values for each c in C to get a measure of the tightness of C.

\[
t(C) = \sum_{c \in C} \frac{r(c, C - \{c\})}{|C|}
\]

- ν's percentage of friends is at least K times the tightness of C.

\[
f(C, \nu) = \begin{cases}
true & \text{if } r(\nu) > K \times t(C) \\
false & \text{otherwise}
\end{cases}
\]
Experimental Evaluation

- “AutoClique” Facebook application.
- Evaluated the following schemes on photos by 22 volunteers.
 - CLQ, BAND_2, BAND_3, BAND_4, $\text{IN}_{0.3}$, $\text{IN}_{0.5}$, $\text{IN}_{0.7}$
- For comparison,
 - CLA [Clauset, PR E '05]
 - CZG [Chen, Zaïane, Goebel, ASNAM'09]
Methodology

• **Assumption:** People tagged in a photo form a social clique.

• A test on a photo shared by host s:
 • $T =$ Users tagged in the photo.
 • Pick a random subset P of T.
 • Run the algorithm with P as the participating set and s as the host.
 • Ideally, detected clique C covers all of T.
Recall and Coverage

- **Recall**: Fraction of tagged people covered by the clique.
 \[
 \frac{|T \cap C| - |P|}{|T| - |P|}
 \]

- **Coverage**: Ratio of host user's friends covered by the clique.
 \[
 \frac{|C|}{|n(s)|}
 \]

- **Goal**: High Recall, Low Coverage.
Results

- 1416 photos, 10 tests for each possible $|P|$ between 1 and 8
- 33860 tests total, $\text{Avg}(|T|) = 5.4$, $\text{Avg}(|P|) = 2.5$

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Av. Recall</th>
<th>Av. Coverage</th>
<th>Av. Clique Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLQ</td>
<td>0.49</td>
<td>0.05</td>
<td>11</td>
</tr>
<tr>
<td>BAND\textsubscript{2}</td>
<td>0.90</td>
<td>0.28</td>
<td>65</td>
</tr>
<tr>
<td>BAND\textsubscript{3}</td>
<td>0.88</td>
<td>0.25</td>
<td>54</td>
</tr>
<tr>
<td>BAND\textsubscript{4}</td>
<td>0.85</td>
<td>0.23</td>
<td>48</td>
</tr>
<tr>
<td>IN\textsubscript{0.3}</td>
<td>0.92</td>
<td>0.36</td>
<td>97</td>
</tr>
<tr>
<td>IN\textsubscript{0.5}</td>
<td>0.86</td>
<td>0.23</td>
<td>53</td>
</tr>
<tr>
<td>IN\textsubscript{0.7}</td>
<td>0.74</td>
<td>0.14</td>
<td>30</td>
</tr>
<tr>
<td>CLA</td>
<td>0.75</td>
<td>0.28</td>
<td>71</td>
</tr>
<tr>
<td>CZG</td>
<td>0.57</td>
<td>0.17</td>
<td>36</td>
</tr>
</tbody>
</table>
Recall vs $|P|$

| $|P|$ | CLQ | BAND$_2$ | IN$_{0.3}$ | CLA | CZG |
|-----|------|----------|------------|------|------|
| 1 | 0.29 | 0.74 | 0.79 | 0.53 | 0.39 |
| 2 | 0.31 | 0.76 | 0.81 | 0.74 | 0.56 |
| 3 | 0.31 | 0.74 | 0.81 | 0.79 | 0.60 |
| 4 | 0.28 | 0.74 | 0.81 | 0.79 | 0.61 |
| 5 | 0.28 | 0.75 | 0.81 | 0.81 | 0.62 |
| 6 | 0.25 | 0.74 | 0.83 | 0.82 | 0.61 |
| 7 | 0.26 | 0.74 | 0.84 | 0.81 | 0.61 |
| 8 | 0.24 | 0.74 | 0.84 | 0.82 | 0.63 |

Statistics from 55 photos with >8 tags.
Conclusion

- Automated privacy control can be done by detecting social cliques.
- Proposed methods with ~%90 accuracy and only ~%30 coverage.
- Outperformed existing LCD methods in all evaluation scenarios.
Thank you for your attention.

- Questions?
The number of photos containing specific number of tags.

<table>
<thead>
<tr>
<th>Number of Tags</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Photos</td>
<td>634</td>
<td>337</td>
<td>157</td>
<td>105</td>
<td>63</td>
<td>43</td>
<td>24</td>
<td>55</td>
</tr>
</tbody>
</table>